Suboptimal Polynomial Meshes on Planar Lipschitz Domains

نویسندگان
چکیده

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Sub-optimal polynomial meshes on planar Lipschitz domains

We construct norming meshes with cardinality O(ns), s = 3, for polynomials of total degree at most n, on the closure of bounded planar Lipschitz domains. Such cardinality is intermediate between optimality (s = 2), recently obtained by Kroó on multidimensional C starlike domains, and that arising from a general construction on Markov compact sets due to Calvi and Levenberg (s = 4). 2000 AMS sub...

متن کامل

Polynomial meshes on some classes of planar compact domains ∗

We construct low cardinality admissible meshes for polynomials on three classes of planar compact domains: cartesian graph domains, polar graph domains, and domains with piecewise C 2 boundary, that satisfy a Markov polynomial inequality. 1 Planar cartesian and polar graph domains Let K ⊂ R d be a polynomial determining compact domain (i.e., a polynomial vanishing there vanishes everywhere). We...

متن کامل

Computing optimal polynomial meshes on planar starlike domains

We construct polynomial norming meshes with optimal cardinality growth, on planar compact starlike domains that satisfy a uniform interior ball condition. Moreover, we provide an algorithm that computes such meshes on planar C convex domains by Blaschke’s rolling ball theorem. 2000 AMS subject classification: 41A10, 41A63, 65D05.

متن کامل

Constructing optimal polynomial meshes on planar starlike domains

We construct polynomial norming meshes with optimal cardinality growth, on planar compact starlike domains that satisfy a Uniform Interior Ball Condition (UIBC). 2000 AMS subject classification: 41A10, 41A63, 65D05.

متن کامل

On optimal polynomial meshes

Let P d n be the the space of real algebraic polynomials of d variables and degree at most n, K ⊂ R a compact set, ||p||K := supx∈K |p(x)| the usual supremum norm on K, card(Y ) the cardinality of a finite set Y . A family of sets Y = {Yn ⊂ K, n ∈ N} is called an admissible mesh in K if there exists a constant c1 > 0 depending only on K such that ||p||K ≤ c1||p||Yn , p ∈ P d n , n ∈ N, where th...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Numerical Functional Analysis and Optimization

سال: 2014

ISSN: 0163-0563,1532-2467

DOI: 10.1080/01630563.2014.884583